Package: gumboot (via r-universe)

September 12, 2024

Type Package

Title Bootstrap Analyses of Sampling Uncertainty in Goodness-of-Fit Statistics

Version 1.0.1

Author Martyn Clark [aut], Kevin Shook [aut, trl, cre]

Maintainer Kevin Shook <kevin.shook@usask.ca>

Description Uses jackknife and bootstrap methods to quantify the sampling uncertainty in goodness-of-fit statistics. Full details are in Clark et al. (2021), ``The abuse of popular performance metrics in hydrologic modeling", Water Resources Research, <doi:10.1029/2020WR029001>.

License GPL-3

Encoding UTF-8

Depends R (>= 4.0)

Imports stats, dplyr, ggplot2, lubridate, stringr, ncdf4, reshape2

LazyData true

RoxygenNote 7.2.3

Suggests testthat, knitr, rmarkdown

VignetteBuilder knitr

NeedsCompilation no

Date/Publication 2023-10-18 16:20:05 UTC

Repository https://kevinshook.r-universe.dev

RemoteUrl https://github.com/cran/gumboot

RemoteRef HEAD

RemoteSha fc5db8ab1a4d943ee22bc2a839f0517ab8bf254d

2 gumboot-package

Contents

	 4
	6
	7
	8
	8
	10
_	

Description

Does jackknife after bootstrap analyses of the error in hydrological models by estimating the empirical probability distributions of NSE (Nash-Sutcliffe efficiency) and KGE (Kling-Gupta efficiency) estimators.

Funding

The package was partly funded by the Global institute for Water Security (GIWS; https://water.usask.ca/) and the Global Water Futures (GWF; https://gwf.usask.ca/) program.

Author(s)

Coded by: Martyn Clark and Kevin Shook

Maintained by: Kevin Shook <kevin.shook@usask.ca>

References

The package code is described in:

Clark et al. (2021), "The abuse of popular performance metrics in hydrologic modeling", Water Resources Research, <doi:10.1029/2020WR029001>.

bootjack 3

boo		

Bootstrap-jacknife of flow calibration statistics

Description

Bootstrap-jacknife of flow calibration statistics

Usage

```
bootjack(
  flows,
  GOF_stat = c("NSE", "KGE"),
  nSample = 1000,
  waterYearMonth = 10,
  startYear = NULL,
  endYear = NULL,
  minDays = 100,
  minYears = 10,
  returnSamples = FALSE,
  seed = NULL,
  bootYearFile = NULL
)
```

Arguments

TIOWS	Required.	Data frame	containi	ing the date	e, observed an	d simulated flows. The	е

variable names must be 'date', 'obs', and 'sim', respectively. The date must

be a standard R date.

GOF_stat Required. Name(s) of simulation goodness of fit statistic(s) to be calculated.

Currently both NSE and KGE are supported.

nSample Required. Number of samples for bootstrapping.

waterYearMonth Required. Month of beginning of water year. Default is 10 (October). If the

calendar year is required, set waterYearMonth = 13.

startYear Optional. First year of data to be used. If NULL then not used.

endYear Optional. Last year of data to be used. If NULL then not used.

minDays Required. Minimum number of days per year with valid (i.e. greater than 0)

flows. Default is 100.

minYears Required. Minimum number years to be used. Default is 10.

returnSamples Optional. Default is FALSE. If TRUE, then sample statistics are returned. This is

primarily used for debugging/testing.

seed Optional. If NULL (the default) then no seed is specified for the random number

generator used for the bootstrapping. If a value is specified then the bootstrap-

ping will always use the same set of pseudo-random numbers.

4 CAMELS_bootjack

bootYearFile

Optional. If NULL (the default) the years used for the bootstrapping are neither output nor input. If a file is specified, and it it does not already exist, then the bootstrap years will be written to a .csv file as a table with the dimensions of years x nSample. If a file is specified, and it _does_ exist, then the years will be read in, and used for the bootstrapping.

Value

Returns a data frame containing the goodness of fit statistic name (i.e. 'NSE' and/or 'KGE'), and seJack = standard error of jacknife, seBoot = standard error of bootstrap, p05, p50, p95, the 5th, 50th and 95th percentiles of the estimates, score = jackknife score, biasJack = bias of jackknife, biasBoot = bias of bootstap, seJab = standard error of jackknife after bootstrap.

Author(s)

Martyn Clark and Kevin Shook

See Also

```
read_CAMELS
```

Examples

```
NSE_stats <- bootjack(flows_1030500, "NSE")
```

CAMELS_bootjack

Jackknife after bootstrap for all CAMELS sites

Description

Hydrologic model simulations can be produced using input-response data from the 671 catchments in the CAMELS dataset (Catchment Attributes and MEteorology for Large-sample Studies). Newman et al. (2015) and Addor et al. (2017) provide details on the hydrometeorological and physiographical characteristics of the CAMELS catchments. The CAMELS catchments are those with minimal human disturbance (i.e., minimal land use changes or disturbances, minimal water withdrawals), and are hence almost exclusively smaller, headwater-type catchments (median basin size of 336 km^2). The CAMELS data used for the large-domain model simulations are publicly available at the National Center for Atmospheric Research at https://ral.ucar.edu/solutions/products/camels.

Usage

```
CAMELS_bootjack(
  CAMELS_sites = NULL,
  NetCDF_file = NULL,
  sim_var = "kge",
  GOF_stat = c("NSE", "KGE"),
  nSample = 1000,
```

CAMELS_bootjack 5

```
waterYearMonth = 10,
startYear = NULL,
endYear = NULL,
minDays = 100,
minYears = 10,
seed = NULL,
bootYearFile = NULL,
quiet = FALSE
)
```

Arguments

CAMELS_sites Required. Data frame of CAMELS sites. Must contain a field called 'hcdn_site'.

The data frame hcdn_conus_sites will work. You can subset this data frame if

you want to use fewer sites.

NetCDF_file Required. NetCDF file containing CAMELS modelled and gauged flows.

sim_var Required. Name of variable containing simulated flows in NetCDF.

GOF_stat Required. Name(s) of simulation goodness of fit statistic(s) to be calculated.

Currently both NSE and KGE are supported.

nSample Required. Number of samples for bootstrapping.

waterYearMonth Required. Month of beginning of water year. Default is 10 (October). If the

calendar year is required, set waterYearMonth = 13.

startYear Optional. First year of data to be used. If NULL then not used.

Optional. Last year of data to be used. If NULL then not used.

minDays Required. Minimum number of days per year with valid (i.e. greater than 0)

flows. Default is 100.

minYears Required. Minimum number years to be used. Default is 10.

seed Optional. If NULL (the default) then no seed is specified for the random number

generator used for the bootstrapping. If a value is specified then the bootstrap-

ping will always use the same set of pseudo-random numbers.

bootYearFile Optional. If NULL (the default) the years used for the bootstrapping are neither

output nor input. If a file is specified, and it it does not already exist, then the bootstrap years will be written to a .csv file as a table with the dimensions of years x nSample. If a file is specified, and it _does_ exist, then the years will be

read in, and used for the bootstrapping.

quiet Optional. If FALSE (the default) a progress bar is displayed. If TRUE, it is not.

Value

Returns a data frame containing the following variables:

CAMELS_site CAMELS site number

lat CAMELS site latitude

1on CAMELS site longitude

GOF_stat Goodness of fit statistics (i.e. NSE or KGE)

6 flows_1030500

```
seJack standard error of jacknife
seBoot standard error of bootstrap
p05, p50, p95 the 5th, 50th and 95th percentiles of the estimates
score the jackknife score
biasJack the bias of the jackknife
biasBoot the bias of the bootstrap
seJab the standard error of the jackknife after bootstrap
```

Author(s)

Martyn Clark and Kevin Shook

References

N. Addor, A. Newman, M. Mizukami, and M. P. Clark, 2017. Catchment attributes for large-sample studies. Boulder, CO: UCAR/NCAR. doi: 10.5065/D6G73C3Q

Addor, N., Newman, A. J., Mizukami, N. and Clark, M. P.: The CAMELS data set: catchment attributes and meteorology for large-sample studies, Hydrol. Earth Syst. Sci., 21, 5293–5313, doi: 10.5194/hess2152932017, 2017.

See Also

```
read_CAMELS
```

Examples

```
## Not run:
camels <- CAMELS_bootjack(CAMELS_sites = sites, NetCDF_file = "CAMELS_flow.nc")
## End(Not run)</pre>
```

flows_1030500

Observed and simulated flows for a single location

Description

A data frame containing observed and simulated flows for USGS site 1030500

Usage

flows_1030500

Format

A data frame with 6940 rows and 3 variables:

```
date Date of flowsobs observed flows (m³)/s)sim simulated flows (m³)/s)
```

```
ggplot_estimate_uncertainties
```

Plots uncertainties in model error estimates

Description

Plots uncertainties in model error estimates

Usage

```
ggplot_estimate_uncertainties(JAB_stats, fill_colour = NULL)
```

Arguments

JAB_stats Required. Data frame of jackknife after boot statistics for a large number of

model runs, as produced by CAMELS_bootjack.

fill_colour Optional. If NULL (the default), then all data series are plotted as lines. If speci-

fied, e.g.fill_colour = "orange", the plot of 2 x the Jackknife estimate of the

standard error will be filled with the specified colour.

Value

Returns a ggplot2 object of the plots, faceted by goodness of fit statistic, i.e. NSE/KGE. The confidence interval (difference between the 95^{hh} and 5^{hh} quantiles, and the value of 2 x the Bootstrap estimate of the standard error are plotted as lines. The values of 2 x the Jackknife estimate of the standard error are plotted as filled)

Author(s)

Martyn Clark and Kevin Shook

See Also

```
CAMELS_bootjack
```

Examples

```
## Not run: p <- ggplot_estimate_uncertainties(all_stats, "orange")</pre>
```

8 read_CAMELS

hcdn_conus_sites

Locations of HCDN sites in CONUS

Description

A data frame containing the locations of the USGS Hydro-Climatic Data Network site for the continental US (CONUS). These are the same sites used by CAMELS (Catchment Attributes and MEteorology for Large-sample Studies).

Usage

hcdn_conus_sites

Format

A data frame with 670 rows and 3 variables:

hcdn_site HCDN site number (integer)

lat Site latitude (decimal degrees)

lon Site longitude (decimal degrees)

Source

This data set is described in Lins, H. F. (2012). USGS Hydro-climatic data network 2009 (HCDN-2009). U.S. Geological Survey Fact Sheet 2012-3047. Retrieved from https://pubs.usgs.gov/fs/2012/3047/. The data can be downloaded at doi: 10.5066/P9HP0WFJ.

read_CAMELS	Reads simulated and observed values from CAMELS netcdf file for a
	single location

Description

Reads simulated and observed values from CAMELS netcdf file for a single location

Usage

```
read_CAMELS(nc_file, site, obsName = "obs", simName = "kge")
```

Arguments

nc_file	Required. netCDF file to read CAMELS data from.
site	Required. Site number to extract data.
obsName	Required. Name for variable containing observations. Default is "obs".
simName	Required. Name for variable containing simulations. Default is "kge".

read_CAMELS 9

Value

Returns a data frame containing the date, observed and simulated flows. The name of the observed flow variable is obs, the name of the simulated flow variable is sim.

Author(s)

Martyn Clark and Kevin Shook

See Also

```
CAMELS_bootjack
```

Examples

```
## Not run:
flows <- read_CAMELS(nc_file = "CAMELS_flow.nc", site = 1030500)
## End(Not run)</pre>
```

Index

```
* datasets
    flows_1030500, 6
    hcdn_conus_sites, 8

bootjack, 3

CAMELS_bootjack, 4, 7, 9

flows_1030500, 6

ggplot_estimate_uncertainties, 7
gumboot-package, 2

hcdn_conus_sites, 8

read_CAMELS, 4, 6, 8
```